
Interface synthesis between software chip model and
target board

Seungjong Lee a,*, Ando Ki b, In-Cheol Park a, Chong-Min Kyung a

a Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology,

305-701 Daejon, South Korea
b Dynalith Systems Co. Ltd., Mirae Asset Venture Tower, 996-17 Daechi-Dong, Kangnam-Gu, 135-280 Seoul, South Korea

Abstract

This paper reports on the synthesis of interface between software chip model and target board in a behavioral

emulation system called in-system algorithm verification engine (iSAVE). iSAVE performs in-system verification of the

behavioral description of a chip in such high-level languages as C in the context of its application board at the early chip

design stage. The interface between the target chip and the target board is implemented as two parts; software part

running on a microprocessor in a multi-thread fashion and hardware part mapped into field programmable gate array

logic. The proposed idea is validated by successfully demonstrating the behavioral emulation of MP3 decoder chip, i.e.,

running the MP3 decoding algorithm written in C along with the real MP3 player board minus the MP3 decoder chip

itself through the proposed interface scheme.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Emulation; In-system verification; Real-time operating system; Interrupt controller; MP3

1. Introduction

In designing a chip as a part of complex infor-
mation processing systems comprising multiple
chips and other system modules, in-system func-
tional verification of the chip model, i.e., func-
tional verification of the design data of each chip
in the context of its target application system is
very crucial. In-system verification is especially
important in multimedia applications where the

functional correctness of the chip being designed
can be conveniently checked by directly connecting
the chip model to the real hardware environment
in the application system such as camera, video
screen, speaker, and microphone. On the contrary,
relying only on traditional software simulation
using artificial test/verification vectors can leave
functional bugs undetected until the actual silicon
chip becomes available, due to the difficulty of
covering all possible corner cases.

Traditional hardware emulation, i.e., struc-
tural emulation in register-transfer level (RTL) or
gate-level where the gate-level model is mapped
into field programmable gate array (FPGA), has
been widely used in recent years as an integral part
of the verification flow of various ASICs and

Journal of Systems Architecture 48 (2002) 49–57

www.elsevier.com/locate/sysarc

*Corresponding author.

E-mail addresses: sjlee@vslab.kaist.ac.kr (S. Lee), adki@

dynalith.com (A. Ki), icpark@ee.kaist.ac.kr (I.-C. Park),

kyung@ee.kaist.ac.kr (C.-M. Kyung).

1383-7621/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S1383-7621 (02 )00065-6

mail to: sjlee@vslab.kaist.ac.kr


microprocessors. Despite the speed and relatively
wide functional test coverage, the structural emu-
lation, i.e., emulation at RTL or gate-level has a
limitation in reducing the time-to-market, as the
RTL or gate-level model can only be obtained at
the end of the design stage, putting the emulation
at the end of the verification flow. Therefore, if
some architectural errors are found during the
emulation, it generally takes a very long time until
the emulation runs again with identified bugs
fixed.

Many VLSI chip designs, especially in signal
processing area, are started with the algorithm
model written in high-level programming lan-
guages such as C, C++ and SystemC [1]. After the
C model is verified with simulation, the designer
translates it into RTL model written as hardware
description language (HDL).

Fig. 1 shows the trend of IC design verification.
HDL-based simulation is not fast enough for
complex chip. System-level, or behavioral simula-
tion allows not only faster model execution but
also implementation in mixed-HW/SW system by
adopting high level languages (HLLs) such as C/
C++. On the other hand, hardware emulation, or
structural emulation has been used for the past 15
years as a design sign-off, as it allows wider set of
test vectors to be applied. Similarly, in-system
verification is nearly mandatory in verifying the

system-level models. Driving forces behind this
trend towards in-system verification, or behavioral
emulation are ever-growing chip complexity and
short design turn-around requirement.

We present in this paper a behavioral emulation
system, which lets designers perform in-system
verification, i.e., verification of chip model written
in HLLs such as C, C++ or SystemC in the context
of the target application system.

1.1. System overview

In-system algorithm verification engine (iSAVE)
is a system that enables an algorithm or a behav-
ioral chip model of a chip written in C to be ver-
ified in the context of its target application system
[2]. Once the behavioral C model is verified, it can
be used as a golden reference model with which the
lower-level design translation/implementation is to
be compared. Furthermore, C model which does
not have such constructs as pointer and file I/O
can be translated to HDL for synthesis. This sys-
tem was also successfully demonstrated to verify
the functional correctness of an instruction-level
model of CISC microprocessors with commercial
applications in real environment [3], where an in-
struction set simulator as the behavioral model of
the microprocessor runs along with external bus
model implemented in FPGA which, in turn,
communicates with the outer world, i.e., its
motherboard.

Fig. 2 shows the iSAVE-based emulation sys-
tem consisting of two parts: host computer res-
ponsible for the generation of compiled code for
the behavioral model, and the iSAVE system
which, in turn, consists of processing engine (PE)
and pin signal generator (PSG). The first task of
the chip designer is to write the algorithm or be-
havioral model of the chip, which is translated into
a code directly interacting with PSG after the de-
signer specifies the software variables responsible
for communicating with the external hardware [2].
The generated code is compiled in the host com-
puter and is downloaded to PE where the behavior
of the target chip, i.e., chip to be designed, is
verified.

Another task required by the designer is to des-
cribe the chip interface model. The designer ini-

Fig. 1. Trend of IC verification is from RTL/gate-level to sys-

tem-level in the level of modeling (vertical) axis, and from tar-

get-chip only to in-system, i.e., target chip + target application

system, in the scope of verification (horizontal) axis.

50 S. Lee et al. / Journal of Systems Architecture 48 (2002) 49–57



tially describes the chip interface as a finite state
machine (FSM), which is translated to HDL code.
Finally, the interface models are mapped into the
PSG implemented in FPGA which generates/re-
ceives real hardware signals to/from the target
application system via cable and/or the same
socket as will be used by the target chip when it is
fabricated and packaged.

The iSAVE system was implemented with
Pentium-III processor and its chipset. Custom
peripherals, such as kernel ROM, LCD driver and
specially designed interrupt controller, as shown in
Fig. 2(b), are implemented with an FPGA chip.

The PSG consists of three parts: (i) PCI interface
for communicating with PE, (ii) FPGA chip for
implementing the relevant I/O interface protocol
and generating pin signals compatible with the
socket pins in the target application system, and
(iii) logic probing unit for monitoring various I/O
interface signals.

The bandwidth between the algorithm model
and the interface model often becomes the per-
formance bottleneck of the behavioral emulator.
In iSAVE, the algorithm model and the interface
model communicate with each other using a pre-
defined set of commands and data packet. Com-
pared to signal-level communication, it reduces
the communication bandwidth and, therefore,
achieves higher emulation speed [3].

The behavioral emulation has the following
benefits compared to the structural emulation:

• In structural emulation, target application sys-
tem often needs to be slowed down to level with
the slow speed of the emulation system itself. In
iSAVE, clock is fed to the interface model only.
Consequently, iSAVE can achieve much faster
external interface than the structural emulation
where all parts must operate with a clock. 1

• Running the algorithm in software gives the de-
signer more flexibility in debugging. Further-
more, time to restart emulation after bug
fixing is significantly less compared with the
structural emulation, as the algorithm or behav-
ioral model is easier to diagnose and debug than
the structural or gate-level model.

One of the most crucial issues in the design of
behavioral emulation is how to interconnect the
algorithm part of the chip model executed se-
quentially and the interface part of the chip model
executed in parallel.

Fig. 2. (a) Overall structure of the proposed behavioral emu-

lation system which consists of iSAVE system, host computer

and target application system, and (b) details of hardware ar-

chitecture of the iSAVE.

1 In structural emulation (or hardware emulation), the clock

speed of the target system, the FPGA-mapped internal logic

and the interface circuit in between must be identical, which is

below 1 MHz for the gate count of about 500 000 gates or

above, while in behavioral emulation, due to high-speed func-

tional execution, the clock speed of the interface easily reaches

50 MHz or above.

S. Lee et al. / Journal of Systems Architecture 48 (2002) 49–57 51



1.2. Hardware/software interface synthesis

There has been a need for rapid prototyping
systems for many years [9]. Most of them were
proposed as HW/SW codesign tools to profile
performance or to verify a synthesized system.
System description is partitioned into two parts:
software and hardware.

Behavioral emulation is mostly regarded as an
extension of structural emulator [5], and contains a
number of processors executing RTL models of a
part of the system and FPGA’s executing gate-
level models of the rest. Two models are connected
with simple logic attached to interface software
and hardware.

There are some research results reported in the
interface synthesis between hardware and software
[6]. Chou et al. [7] describes the interface synthesis
between hardware and software in the context of
microcontroller-based design, where I/O ports are
automatically assigned and the relevant interface
logic and software module as required for the in-
terface as generated from templates. In [7], the
software module always controls the hardware
block without allowing the hardware giving com-
mands to the software, i.e., the hardware always
runs as a slave to the software. In case of actual
chip interfaces, however, the interface is bi-direc-
tional, i.e., it is possible for the interface (hardware)
to request data from the algorithm (software).
Moreover, Chou et al’s result is not generally ap-
plicable as the interface design solution since it
does not consider the synchronization during HW/
SW partitioning as originally specified in the sys-
tem model. In our case, on the other hand, event
handler is available which is responsible for syn-
chronization between the chip model and the tar-
get application system.

Basu et al. [8] included event handler in the
design of embedded systems, where concurrently
executed blocks are modeled as interrupt service
routines (ISRs). ISRs are generated based on the
control data flow graph while considering stack
overflow and return position of ISR. These con-
siderations made the system design process a very
complex one.

In iSAVE, the event handler is not a part of the
chip model provided by the user, but a module

automatically generated to manage the bandwidth
and latency of interfaces of the model. ISRs as the
event handler in iSAVE has simpler structure than
one in [8] because it is handled in the dedicated
operating system (OS).

While most algorithm models assume that every
input is immediately available, time to access data
from external devices in the application system
cannot actually be ignored in the real system.
These inputs in the algorithm part of the model are
replaced with the code that handles the blocking
input. Blocking input denotes input signal which
halts the execution of the algorithm model until it
is handled. If the bandwidth of external interface is
lower than the internal processing speed, the al-
gorithm model must wait until all valid inputs are
ready. Moreover, in case of multiple independent
interfaces, the fraction of waiting time among total
execution time can be significant, although it is not
observable in real VLSI systems because this
overhead, i.e., waiting time, is hidden due to the
concurrent execution of the interface hardware. To
simulate such concurrent event, it is necessary to
make interface processing invisible to the execu-
tion of the algorithm.

In this paper, we propose a method to manage
interface models of VLSI system to reduce the
overhead of handling blocking inputs. In Section
2, we propose a method to manage the chip in-
terface model especially in the context of its co-
working with the algorithm part of the whole chip
model. In Section 3, an MP3 decoder chip modeled
in C was successfully verified in its target appli-
cation system using the proposed behavioral em-
ulation system.

2. Interface implementation

2.1. Interface modeling

The algorithm model of a chip being designed is
generally written without considering the interface
with the target application system of the chip. It is
then necessary that designer describes the opera-
tions of the interface as FSM. The interface model,
as a bridge between the algorithm and the appli-
cation system, accesses variables of the algorithm

52 S. Lee et al. / Journal of Systems Architecture 48 (2002) 49–57



as well as generates signals on the pins for direct
connection to the target application system.

Because of strong connection between the chip
model and the interface, the interface model has
been implemented in software [11]. When the al-
gorithm sends a command to the interface using a
predefined function, the interface model interprets
it and generates appropriate pin signals. In case of
behavioral emulation, time consumed to commu-
nicate between the algorithm and the interface
model is longer than in cosimulation. We need to
consider the bandwidth and latency issues in im-
plementing the interface model.

• Interface bandwidth: Outgoing pin signals sent
from the algorithm is translated into real pin sig-
nals on the chip boundary with the simple inter-
face model. These signals pass through the bus
where the processor and the interface model are
connected. As the operating frequency of the
bus is typically about 10 times slower than that
of typical microprocessors, time consumed for
communicating between the chip model and the
simple interface model becomes the bottleneck
of the behavioral emulation. Hence, it is desirable
to reduce the traffic due to this communication.

• Interface latency: With the bus cycle where the
application system sends a signal and waits for
its response from the emulated chip, the res-
ponse time (TR) can be calculated as Eq. (1):

TR ¼ 2� Ti þ TG ð1Þ

where Ti denotes the time of flight between the
pin and the interface model, and TG denotes the
time to generate signal in the interface model.
Some interface cycles strictly require the chip to
respond within the specified time. In iSAVE,
the interface model is implemented in hardware
rather than in software to better deal with the
latency issue.

The emulation system consists of three
parts––algorithm, interface handler and interface
model as shown in Fig. 3. The algorithm which
runs on the PE is augmented with functions which
access the software buffer called S-buffer as shown
in Fig. 3 [2]. The interface model running on the
PSG generates the pin signals of the emulated chip.

Fig. 3 shows that the interface handler which
runs concurrently with algorithm on PE acts as a
bridge between the algorithm and the interface
model. As the signal rate of the interface model is
generally different from that of the algorithm, it is
necessary to include a hardware buffer called
H-buffer in FPGA. Therefore, two buffers are
included at the interface of iSAVE. The role of
interface handler is to manage data stream between
the two such that the required data throughput
is sustained within the allowable latency.

Fig. 4 shows the block diagram of the PSG. It
contains a number of interface models each of
which emulates a group of I/O signals of the emu-
lated chip. The data generated by the interface
model is delivered, via system bus and H-buffer, to
the algorithm running on PE via system bus and
the H-buffer.

2.2. Buffer assignment

Hardware buffer called H-buffer as imple-
mented in FPGA is responsible for connecting the

Fig. 3. Logical model showing the interconnection between the

core algorithm running in PE and the interface model running

in PSG through the interface handler running in PE. A software

buffer called S-buffer is embedded in the PE along with the core

algorithm and the interface handler, while a hardware buffer

called H-buffer is embedded in the PSG.

Fig. 4. Block diagram of the PSG consisting of a set of hard-

ware buffer (H-buffer), with various interface models in the

target application system side, and system I/F unit with PBIC in

the PE side. Details of PBIC is shown in Fig. 5.

S. Lee et al. / Journal of Systems Architecture 48 (2002) 49–57 53



interface handler and the interface model. The
other buffer, S-buffer, is implemented as a software
array and responsible for connecting the algorithm
and the interface handler.

H-buffer is a speed buffer between the target
application system and the system bus where the
interface model is attached, while S-buffer is a
speed buffer between the algorithm and the inter-
face model. The interface handler fetches the data
from the H-buffer and stores them in the S-buffer,
and then the algorithm accesses the S-buffer with
the relevant API functions. Operation of the in-
terface handler is described in Section 2.4.

Size of the S-buffer should be larger than the
amount of data needed to be fetched by the algo-
rithmat once.While the S-buffer is flexible to change
its size, the H-buffer is limited in size due to the
hardware resource constraint. The size of the H-
buffer also affects the execution time of the algo-
rithm. For example, if the H-buffer is too small, it
results in excessive calls to interface handler to fill
the S-buffer and wastes large computing power for
thread switching among multiple threads. On the
other hand, if theH-buffer is too large, it takes a long
time to fill up and empty the buffer, resulting in slow
context switching in case of multiple interacting I/O
deviceswith separate buffers for each. The size of the
buffer can be calculated from the bandwidths of the
interface model and the system bus [10].

2.3. Priority-based interrupt controller (PBIC)

The interrupt controller included in the PSG
decides which hardware buffer needs to be serviced
with priority. The priority-based scheme in the
PBIC, by controlling the latency of data transfer
between hardware and software, helps reduce the
time to transfer data especially for the high-pri-
ority service request.

The priority for the hardware buffer is deter-
mined by Eq. (2).

Pbuf ¼ Pbase þ aSbuf þ bTwait ð2Þ
where a, b are some constants.

The base priority, Pbase, is defined for each H-
buffer. Generally, higher base priority is assigned
to a hardware buffer attached to an interface
which requires faster I/O response time.

Sbuf , which denotes the filled portion of the H-
buffer, is included to prevent the ‘buffer full’ or
‘buffer overflow’ condition. Finally, Twait, which
denotes the time H-buffer spent in waiting, is in-
cluded to prevent ‘excessive starvation’.

Fig. 5 shows the interrupt controller imple-
mented in the PSG. The priority for eachH-buffer is
calculated in the priority calculator using the Eq. (2)
with Sbuf and Twait coming from the H-buffer. A
small counter is embedded in each priority calcula-
tor tomeasure thewaiting time, Twait, for eachbuffer.

The index of H-buffer which has the highest
priority so far is stored as the champion index.
Current priority of each H-buffer, as scanned by
the challenger index being incremented by one, is
compared with that of champion H-buffer, i.e., H-
buffer designated by the champion index, to up-
date the champion index if necessary.

2.4. Managing interface handler with thread

The interface handler runs independent of the
algorithm model of the target chip in PE, and
therefore, can simultaneously access the same
variable with the algorithm in PE. This property
allows implementing the interface handler as
thread. The algorithm and interface handler for
each chip interface are treated as separate thread
executed concurrently. Unlike traditional multi-
thread program synchronization or precedence
relation among threads is not necessary in the
behavioral emulator.

The PE normally executes the chip model, and
switches to the associated handler routine when

Fig. 5. Detailed block diagram of the PBIC shown at the lower

left corner of Fig. 4.

54 S. Lee et al. / Journal of Systems Architecture 48 (2002) 49–57



the handler needs to access the H-buffer, which is
called demand scheduling.

The sequence of demand scheduling is ex-
plained below according to the sequence diagram
in Fig. 6. Algorithm runs with fetching data in the
S-buffer: (1) When enough data from the interface
model are stored in the H-buffer, the H-buffer
generates the event and marks the event register at
the interrupt controller. (2) If at least one event
occurs, the event controller alarms the processor
with an interrupt signal and then the thread
scheduler is invoked. The thread scheduler identi-
fies the hardware interface which has generated the
event. (3) The thread scheduler invokes the as-
signed handler as a new thread which runs con-
currently with the algorithm thread. (4) The called
interface handler then moves data in the H-buffer
to the S-buffer. (5) After data movement, the in-
terface handler notifies its completion to the
thread scheduler.

3. Experimental results

3.1. Implementation

iSAVE system executes the algorithm model
and FPGA chip which executes the interface
model. The kernel controls the communication
with host computer and thread-level switching.
The development system is built with GCC as C
compiler. Each handler is programmed as an in-
dependent C function but it is possible to access
the S-buffer in the algorithm. The kernel initializes
each thread with the memory addresses of each
handler routine before it executes the algorithm.
The H-buffer is implemented with the embedded
memory block available in the FPGA.

3.2. Application: MP3 decoder chip

An MP3 (MPEG-1 audio layer-3) decoder chip,
MAS3507D is used as a vehicle to demonstrate the
behavioral emulation based on the proposed in-
terface synthesis. The chip has three serial inter-
faces and extra pins such as reset and power-pins
[12]. The MP3 ISO model available in the public
domain [13] is used as the algorithm model of the
chip.

We implemented the interface model for each
interface as the following:

Serial output (SO): The handler moves the data
in the S-buffer to the H-buffer, and then the in-
terface model serializes the 16-bit data in the
hardware buffer. The hardware buffer must
not starve, i.e., it needs to be filled instanta-
neously to generate the sound uninterrupted.
Serial input (SI): When the S-buffer does not
have enough data, the chip must assert the DE-
MAND pin before it reads the data stream.
Handler controls the DEMAND pin along with
loading the data from the H-buffer. The inter-
face model aligns the pin signals in parallel
and stores them in the H-buffer.
I2C: The application system initializes the inter-
nal registers in the chip via I2C interface. In
contrast to other two interfaces described in
FSM, its asynchronous operation can be better
described in HDL code. Another special consid-
eration is that the state machine to interpret the
cycles is located in the handler while the inter-
face model generates 8-bit serial data.
iSAVE system automatically connects the file

related to I2SI and I2SO to corresponding inter-
face models and connects the variable which con-
trol a MP3 data stream to the DEMAND pin.

Table 1 shows the amount of time consumed in
the MP3 algorithm decoding, SI and SO, respec-
tively for data transfer for a 60-s MP3 data stream.

It was observed that although the processor
consumes only about 30% of its computing power
for MP3 decoding, correct sound cannot be pro-
duced without concurrent interface management,
since the H-buffer assigned to SO starves during
MP3 decoding and filling of the H-buffer assigned
to SI. By filling the H-buffer assigned to SO
with highest priority among the chip interfaces,

Fig. 6. Sequence of demand scheduling using thread scheduler.

S. Lee et al. / Journal of Systems Architecture 48 (2002) 49–57 55



uninterrupted sound can be produced with the
concurrent interface management.

4. Conclusion

In this paper, we presented a behavioral emu-
lation system, called iSAVE. iSAVE allows be-
havioral emulation of a chip to be performed in
the context of its target system. We suggested a
method of concurrently executing the core algo-
rithm and the chip interface, which gives the fol-
lowing additional advantages: First, the interface
can be described without modifying the algorithm.
Second, as the overhead of checking the chip in-
terface can be borne by the handler, the processor
can concentrate on the core algorithm execution.

We successfully demonstrated prototype iSAVE
system by the emulation of MP3 decoder chip as
an application. We were able to run the whole
MP3 decoder system by preparing only the inter-
face model with the MP3 algorithm obtained from
the public domain, which can be modified or re-
placed by the algorithm developer. The algorithm
model and the application system need no modi-
fication for the emulation regardless of the hard-
ware requirement of the application system.

5. For further reading

The following reference may also be of interest
to the reader: [4].

References

[1] K. Wakabayashi, T. Okamoto, C-based SoC design flow

and EDA tools: an ASIC and system vendor perspective,

IEEE Tr. CAD 19 (12 December) (2000).

[2] C.J. Park, S. Lee, B.I. Park, H. Choi, J.G. Lee, Y.I. Kim,

M.K. Jung I.C. Park, C.M. Kyung, Early in-system

verification of behavioral chip models, in: Proceedings of

High-Level Design Verification and Testing, 1999.

[3] N. Kim, H. Choi, S. Lee, S. Lee, I.C. Park, C.M. Kyung,

Virtual chip: making functional models work on real target

system, in: Proceedings of Design Automation Conference,

1998.

[4] B. Clement, R. Hersenmeule, E. Lantreibecq, B. Raman-

adin, P. Coulomb, F. Pogodalla, Fast prototyping: a

system design flow applied to a complex system-on-chip

multiprocessor design, in: Proceedings of Design Automa-

tion Conference, 1999.

[5] J. Bauer, M. Bershteyn, I. Kaplan, P. Vyedin, A recon-

figurable logic machine for fast event-driven simulation,

in: Proceedings of Design Automation Conference,

1998.

[6] A. Rajawat, M. Balakrishnan, A. Kumar, Interface

synthesis: issues and approaches, in: Proceedings of VLSI

Design, 2000.

[7] P. Chou, R. Ortega, G. Borriello, Synthesis of the HW/SW

interface in microcontroller-based systems, in: Proceedings

of International Conference on Computer-Aided Design,

1992.

[8] A. Basu, R.S. Mitra, P. Marwedel, Interface synthesis

for embedded applications in a codesign environment, in:

Proceedings of VLSI Design, 1998.

[9] W. Wolf, Hardware-software co-design of embedded

systems, in: Proceedings of the IEEE, July, 1994.

[10] B. Svantesson, S. Kumar, A. Hemani, A methodology and

algorithms for efficient interprocess communication syn-

thesis from system description in SDL, in: Proceedings of

VLSI Design, 1998.

[11] L. Guerra, J. Fitzner, D. Talukdar, C. Schlager, B.

Tabbara, V. Zivojnovic, Cycle and phase accurate DSP

modeling and integration for HW/SW co-verification, in:

Proceedings of Design Automation Conference, 1999.

[12] MAS3507D MPEG 1/2 layer 2/3 audio decoder manual,

Macronas Intermetall, 1998.

[13] MPEG-1 and MPEG-2 audio draft software, Universi-

taet Hannover, ftp://ftp.tnt.uni-hannover.de/pub/MPEG/

audio.

Table 1

Execution time for algorithm execution (MP3 decoding), SI and

SO for a 60-s MP3 stream data

Without handler (s) With handler (s)

Algorithm 26 26

SI 35 3.8

SO 69 12.4

Total playing

time

130 60 (idle over 17.8 s)

Seunjong Lee received the B.S. and the
M.S. degrees in electrical engineering
from Korea Advanced Institute of
Science and Technology (KAIST) in
1993 and 1995, respectively. He is cur-
rently working toward the Ph.D. de-
gree in the Department of Electrical
Engineering, KAIST. He is currently a
research engineer with Dynalith Sys-
tems, Korea, where he has been since
2000. His current research interests in-
clude computer architecture and sys-
tem verification. He received the Best
Paper Award in the AP-ASIC in 2000.

56 S. Lee et al. / Journal of Systems Architecture 48 (2002) 49–57

ftp://ftp.tnt.uni-hannover.de/pub/MPEG/audio
ftp://ftp.tnt.uni-hannover.de/pub/MPEG/audio


Ando Ki received a B.S. degree in
electronics engineering in 1986 from
Hanyan University, a M.S. degree in
electrical engineering in 1988 from
KAIST, and a Ph.D. degree in com-
puter science in 1997 from the Univer-
sity of Manchester. He was awarded
the ETRI scholarship and the British
Council scholarship for his study in
UK. Before he pursued his Ph.D. de-
gree, he worked for the ETRI as a
senior researcher. He is currently the
ChiefEngineer at theDynalithSystems.

In-Cheol Park received the B.S. degree
in electronics engineering from Seoul
National University in 1986, the M.S.
and Ph.D. degrees in electrical engi-
neering from KAIST in 1988 and 1992,
respectively. Since June 1996, he has
been an Assistant Professor and now
an Associate Professor in the Depart-
ment of Electrical Engineering and
Computer Science at KAIST. Prior to
joining KAIST, he was with IBM T.J.
Watson Research Center, Yorktown,
New York from May 1995 to May
1996, where he researched on high-

speed circuit design. He received the Best Paper Award at the
ICCD in 1999, and the Best Design Award at the Asia and
South Pacific Design Automation Conference (ASP-DAC) in
1997. His current research interests include CAD algorithms for
high-level synthesis and VLSI architectures for general-purpose
microprocessors. He is a senior member of the IEEE.

Chong-Min Kyung received the B.S.
degree in electronic engineering from
Seoul National University, Korea, in
1975, and the M.S. and Ph.D. degrees
in electrical engineering from KAIST,
Korea, in 1977 and 1981, respectively.
After graduation from KAIST, he
worked at AT&T Bell Laboratories,
Murray Hill, NJ, from April 1981 to
January 1983 in the area of semicon-
ductor device and process simulation.
In February 1983, he joined the De-
partment of Electrical Engineering at
KAIST, where he is now a Professor.

His current research interests include microprocessor/DSP ar-
chitecture, chip design and verification methodology. He is
Director of the Integrated Circuit Design Education Center
(IDEC) established to promote the VLSI design education in
Korean Universities through CAD environment setup, chip
fabrication services, and providing various educational mate-
rials and media related with integrated circuits and systems
design. He is also Director of Center for High-Performance
Integrated Systems (CHiPS) located in KAIST. During 1993–
1994, he served as the Asian Representative in the International
Conference on Computer-Aided Design (ICCAD) executive
committee. He also served as Vice Chairman of the 1999
COOLChips II held in Kyoto, Japan, and as Co-chair of the
program committee of ASP-DAC 2000. He received the Most
Excellent Design Award, and Special Feature Award in the
University Design Contest in the ASP-DAC 1997 and 1998,
respectively. He received the Best Paper Award in the
36th Design Automation Conference (DAC) held in NewOr-
leans, LA in June 1999, the 10th International Conference on
Signal Processing Application and Technology (ICSPAT),
Orlando, FL, in November 1999, and the International Con-
ference on Computer Design (ICCD), Austin, TX in October
1999.

S. Lee et al. / Journal of Systems Architecture 48 (2002) 49–57 57


	Interface synthesis between software chip model and target board
	Introduction
	System overview
	Hardware/software interface synthesis

	Interface implementation
	Interface modeling
	Buffer assignment
	Priority-based interrupt controller (PBIC)
	Managing interface handler with thread

	Experimental results
	Implementation
	Application: MP3 decoder chip

	Conclusion
	For further reading
	References


